Note

COMMENTS ON THE NOTE "ON THE CORRECT RATE EXPRESSION IN NONISOTHERMAL KINETICS" BY C. POPESCU, M. STAN AND E. SEGAL

K.O. STRØMME

Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-03153 (Norway) (Received 16 August 1988)

The argument in the note cited above, [1], against the two-term rate expression proposed for non-isothermal reaction kinetics [2], is not tenable for the following reason. The basic assumption made that $[A^*] = \text{constant}$, (steady state premise) [1], is only (generally approximately (?)) true at constant temperature for a closed system. At different temperatures steady state will occur at altered $[A^*]$ values. This is expected because A^* and A are assumed to be in a state of equilibrium, which is a function of temperature, and so therefore, is, also $[A^*]$. Thus, in general the conditions of steady state change in non-isothermal reactions, eqn. (7), ref. 1, is accordingly not valid in non-isothermal cases (disregarding the missing negative sign on the right-hand side, which originates in eqn. (6)), nor is the transition from eqn. (7) to eqn. (8). One obtains in place of eqn. (7)

$$\frac{\mathrm{d}[\mathbf{A}]}{\mathrm{d}t} = \left(\frac{\partial[\mathbf{A}]}{\partial T}\right)_{[\mathbf{A}^*]} \beta + \left(\frac{\partial[\mathbf{A}]}{\partial[\mathbf{A}^*]}\right)_T \frac{\mathrm{d}[\mathbf{A}^*]}{\mathrm{d}t}$$

and, since $\beta \equiv dT/dt$

$$\mathbf{d}[\mathbf{A}] = \left(\frac{\partial[\mathbf{A}]}{\partial \mathbf{T}}\right)_{[\mathbf{A}^*]} \mathbf{d}T + \left(\frac{\partial[\mathbf{A}]}{\partial[\mathbf{A}^*]}\right)_T \mathbf{d}[\mathbf{A}^*]$$

where d[A] is the (exact) differential of $[A] = g(T, [A^*])$, which is simply another form of eqn. (2), ref. 1, and is a general expression for the 'equilibrium' between these species.

REFERENCES

1 C. Popescu, M. Stan and E. Segal, Thermochim. Acta, 81 (1984) 375.

2 J.R. MacCallum, Thermochim. Acta, 53 (1982) 375.

0040-6031/89/\$03.50 © 1989 Elsevier Science Publishers B.V.